new_hawkes.Rd
Create a new hawkes model with given arguments
new_hawkes( model_type, par = NULL, data = NULL, init_par = NULL, observation_time = NULL, lower_bound = NULL, upper_bound = NULL, model_vars = NULL )
model_type | A string indicates the model tyep, e.g. EXP for a Hawkes process with an exponential kernel |
---|---|
par | A named vector denotes the model parameters where the names are model parameters and the values are the corresponding parameter values |
data | A list of data.frame(s) where each data.frame is an event cascade with event tims and event magnitudes (optional) |
init_par | Initial parameter values used in fitting |
observation_time | The event cascades observation time. It is assumed that all cascades in data are observed until a common time. |
lower_bound | Model parameter lower bounds. A named vector where names are model parameters and values are the lowest possible values. |
upper_bound | Model parameter upper bounds. A named vector where names are model parameters and values are the largest possible values. |
model_vars | A named list of extra variables provided to hawkes objects |
A model object with class [hawkes] and [hawkes_`model_type`] where `model_type` is replaced by the given model_type
data <- list(data.frame(time = c(0, 0.5, 1))) new_hawkes(model_type = 'EXP', par = c(K = 0.9, theta = 1), data = data, observation_time = Inf)#> - Model: EXP #> - No. of cascades: 1 #> - init_par: #> K NA; theta NA #> - par: #> K 9.00e-01; theta 1.00e+00 #> - Neg Log Likelihood: NA #> - lower_bound: #> K 1.00e-100; theta 1.00e-100 #> - upper_bound: #> K 1.00e+04; theta 3.00e+02